biflatness of certain semigroup algebras

Authors

m. essmaili

a. medghalchi

abstract

in the present paper, we consider biflatness of certain classes of semigroupalgebras. indeed, we give a necessary condition for a band semigroup algebra to bebiflat and show that this condition is not sufficient. also, for a certain class of inversesemigroups s, we show that the biflatness of ell^{1}(s)^{primeprime} is equivalent to the biprojectivity of ell^{1}(s).

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Biflatness of certain semigroup algebras

In the present paper, we consider biflatness of certain classes of semigroupalgebras. Indeed, we give a necessary condition for a band semigroup algebra to bebiflat and show that this condition is not sufficient. Also, for a certain class of inversesemigroups S, we show that the biflatness of ell^{1}(S)^{primeprime} is equivalent to the biprojectivity of ell^{1}(S).

full text

Derivations on Certain Semigroup Algebras

In the present paper we give a partially negative answer to a conjecture of Ghahramani, Runde and Willis. We also discuss the derivation problem for both foundation semigroup algebras and Clifford semigroup algebras. In particular, we prove that if S is a topological Clifford semigroup for which Es is finite, then H1(M(S),M(S))={0}.

full text

derivations on certain semigroup algebras

in the present paper we give a partially negative answer to a conjecture of ghahramani, runde and willis. we also discuss the derivation problem for both foundation semigroup algebras and clifford semigroup algebras. in particular, we prove that if s is a topological clifford semigroup for which es is finite, then h1(m(s),m(s))={0}.

full text

extensions, minimality and idempotents of certain semigroup compactifications

در فصل اول مقدمات و پیش نیازهای لازم برای فصل های بعدی فراهم گردیده است . در فصل دوم مساله توسیع مورد توجه قرار گرفته و ابتدا شرایطی که تحت آن از یک فشرده سازی نیم گروهی خاص یک زیرگروه نرمال بسته یک گروه به یک فشرده سازی متناظر با فشرده سازی اولیه برای گروه رسید مورد بررسی قرار گرفته و سپس ارتیاط بین ساختارهای مختلف روی این دو فشرده سازی از جمله ایده آل های مینیمال چپ و راست و... مورد بررسی قرا...

15 صفحه اول

Biflatness and Pseudo-amenability of Segal Algebras

We investigate generalized amenability and biflatness properties of various (operator) Segal algebras in both the group algebra, L (G), and the Fourier algebra, A(G), of a locally compact group, G. Barry Johnson introduced the important concept of amenability for Banach algebras in [20], where he proved, among many other things, that a group algebra L1(G) is amenable precisely when the locally ...

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 39

issue 5 2013

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023